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Introduction

Canopy architecture describes the surface of the tops of trees in a forest, how
they overlay and grow over each other, how high they are, and what the shape
of each individual tree is. Canopy architecture reflects disturbance history and
species composition. These can be related to biomass, light availability, and
disturbance (1). The competition for light requires different species to niche
differentiate and optimize for different amounts of light. In forests with high
diversity of trees, there will (CITE) likely be high niche differentiation on all
scales in order to live concurrently in the same forest. This will therefore be
reflected in the canopy architecture, with more layers to the canopy. A mystery
that has long puzzled ecologists is on the diversity of the tropical rainforest,
and how so many species are able to live in the same forest (SEE IF YOU CAN
RELATE THIS TO CANOPY ARCH OTHERWISE REMOVE). In addition,
canopy architecture reflects disturbance history. If a canopy is disturbed in a
significant way, such as through wind damage, this will likely cause tree toppling,
which then creates a hole in the canopy. Though this hole will regrow, filled
with other plants, the long term effects will be seen in the canopy architecture
for up to 65 years afterwords (1). Disturbance history has profound effects on
biomass, often secondary growth can result in a high net carbon sink, though
decomposition will inevitably reverse this trend. In addition, anthropogenic
changes can act as a large scale disturbance, which can similarly differentiate
logged and unlogged forests for many years after the disturbance event. Canopy
architecture is one of the summaries we have of complex forested ecosystems,
and summarizing forest structure in a meaningful way can lead to understanding
of how niche differentiation affects the whole forest.

The advent of LiDAR has allowed ecologists to remotely examine forest
canopy heights . LiDAR functions by sending a burst of infrared light and
recording the time it takes for light to return to the source, then using this to
determine the distance the source is away from the detector. They can take
several hundred samples in less than a second, making them extremely effective
(CITE) By using this technology in planes flying over land surface, ecologists can
obtain a very precise visualization of the canopy height across a forest, improving
previous methods of assessing forest structure and size from ground transects.
However, many methods using LiDAR are unable to make use of the topological
data, simplifying it into maximum height and canopy size distribution across
a forest, reducing data on a surface to data on a point. Persistence diagrams
as a way of measuring both height and evenness, therefore have the potential
to describe this surface of the canopy without reduction. Here we use four
parks from the United States, to examine if persistence diagrams from LiDAR
data can differentiate the different parks, and if these ecologically diverse sites
with different disturbance regimes have significantly different canopy structure
as analyzed with topological methods. We do not seek necessarily to explain
differences in persistence across these forests, but to establish that persistence
can differentiate these forests which should theoretically have vastly different
canopy structures.
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Data

We obtained LiDAR data from the National Ecological Observatory Network.
The LiDAR dataset included interpretations of the raw waveform and point
based returns into models of canopy height (CHMs), with just one tree height
per pixel, which was what we used for our analyses. From the larger dataset of
13 ecological regions we imported LiDAR data from four sites Bartlett (BART),
Great Smoky Mountains (GRSM), Harvard Forest (HARV), and Mountain Lake
Biological Station (MLBS) from the Northeastern and Appalachian ecological
regions on the eastern coast of the United States. These forests have signifi-
cantly different forest structures and disturbance histories, from Harvard Forest,
is a Northeastern experimental forest that has been selectively logged (CITE
site); Mountain Lake Biological station, a forest in the Appalachian mountains
of Virginia with history of chestnut blights (2); Great Smoky Mountains Na-
tional Park, with a history of logging in the 1800s; and Bartlett forest which
has selective logging. In addition these sites have vastly different species com-
positions, due to differences in soils and elevations, so we predict differences in
canopy structure over all sites. These collectively resulted in 1050 CHMs upon
which we ran our analyses.

Topological Methods

To perform topological analysis and extract persistence diagrams from the data,
two methods were used. The first of these methods was to obtain transects from
the forest data. Transects are the canopy heights in one line across one a forest,
creating a function along a line of canopy heights.These functions of one variable
that mapped from x coordinate to height at that coordinate on the respective
transect were generated for a random line across each CHM for each forest.
Next, a standard sublevel-set filtration was performed on the function to create
persistence diagrams. Zero dimensional persistence diagrams were obtained as
a result of this method. Since the data was two dimensional by nature, we were
interested how this method would compare to a 2 dimensional case, which led
us to our second method.

The second method of obtaining persistence diagrams was to consider the
data to be a function of two variables. For this we overlaid a grid over the
forest and at each coordinate the function was equal to the height of the canopy
there. Next, we took a 2 dimensional sublevel-set filtration of the function. By
sweeping from the minimum height to the maximum height, we were able to
obtain persistence diagrams for the data. To accomplish this task, we used the
code written by Dr. Nate Strawn provided by Dr. Chris Tralie. Using this
method, zero and one dimensional persistence diagrams of this representation
of the data were obtained. Once we had generated persistence diagrams from
all of our data we converted them into graphs of persistence plotted against
birthtime. We summarize the persistence diagrams for each site by reporting
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the maximum persistence across all CHMs, the mean maximum persistence for
each persistence diagram in the data set for the site, and the mean of the mean
persistence for each persistence diagram in each site.

Machine Learning Methods

From the persistence diagrams, we overlaid a grid and counted the number of
points that fell within each grid cell in order to generate vectors. For each type
of persistence we first found the longest persistence across all diagrams and use
this as the maximum value for all grids in order to generate equal-length vectors.
The grids went from zero to this maximum value by ones.

Next we used these high dimensional vectors to do machine learning through
SVM. SVM learning or support vector machine learning is a process of finding
the hyperplane that best separates data points by category. However there are
many examples of data that is clearly separable but not simply by a hyperplane,
such as data easily separated by a circle. In these cases a kernel function is used.
This is done by raising the dimension of the data so that a hyperplane does
accurately separate the categories of data. In order to determine which kernel
was the most effective at separating data we used cross validation. The data was
split up into training (80% of the data in all cases) and validation data so that
we could test our classification on different vectors than those used to generate
the separating hyper plane. The classification was then tested on the testing
data using the different kernel functions and different cost and gamma values
as the parameters of the classification. The optimal kernel function, cast, and
gamma values were then selected to produce a hyperplane that best separated
the data by category. To do this we used code from Deepanshu Bhalla.

We ran the SVM to classify all four of our forests. This classifies each of the
four variables against every other variable and then using a voting technique to
achieve the best overall prediction model. We report all sites with Kolmogorov-
Smirnof (KS) tests for goodness of fit of our SVMs, and area under the receiver
operating curves for accuracy of prediction.

Results

Transects

We calculated transect data for four sites and a total of 224 persistence diagrams.
Across sites, seven had to be removed, which resulted in blank persistence di-
agrams. The highest persistence is for the Great Smoky Mountains as well as
the highest mean maximum persistence (Table 1). The calculated area under
the curve was 0.610 (Figure 1), and a KS of 0.242.
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Table 1: Summary statistics across all transects in a specific site with mean and
standard deviation in parenthesis.

BART GRSM HARV MLBS
Mean Maximum Persistence 22.18 (2.907) 29.75 (6.845) 23.21 (3.141) 24.71 (5.240)
Maximum Persistence 31 49 38 39
Mean Mean Persistence 7.610 (1.799) 8.453 (2.005) 5.869 (3.090) 7.156 (2.452)

Figure 1: False positives versus true positives for prediction of site 1 using the
transect method
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0 Dimensional Persistence

We analysed a total of 400 canopy height models over the four sites to examine
the zero dimensional persistence. The highest average maximum persistence
was at the Great Smoky Mountains Part, though the highest single value was
at Bartlett forest (Table 2). This resulted in an AUC of .544 and a KS of .088
(Figure 2).

Figure 2: True positive by false positives for the 0D persistence of the Canopy
Height Models

1 Dimensional Persistance

We used the same set of 400 canopy height models for the one dimensional per-
sistencehis resulted in a AUC of .709 and a KS of .37 (Figure 3). The highest
average maximum persistence across sites was at GRSM, MLBS had the highest

6



Table 2: Summary statistics across all data in a specific site with mean and
standard deviation in brackets

BART GRSM HARV MLBS
Mean Maximum Persistence 16.19,(1.375) 24.991,(2.844) 21.725,(3.361) 22.693,(2.703)
Maximum Persistence 50 27 31 31
Mean Mean Persistence 3.604,(.906) 4.473,(1.571) 5.133,(1.926) 5.314,(1.784)

mean mean persistence, and BART had the highest overall persistence (Table 3).

Figure 3: True positive by false positives for the 1-D persistence of the Canopy
Height Models
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Table 3: Summary statistics across all data at a specific site with mean and
standard deviation in brackets

BART GRSM HARV MLBS
Mean Maximum Persistence 16.19,(1.375) 24.991,(3.528) 21.725,(3.361) 22,693,(2.703)
Maximum Persistence 50 27 31 31
Mean Mean Persistence 3.604,(.906) 4.473,(1.571) 5.133,(1.926) 5.314,(1.784)

Discussion

The SVMs were considerably more effective at classifying feature vectors con-
structed from 1d persistence diagrams than the other two methods, the transect
0d method and the non-transect 0d method. Running the classification on 1d
persistence diagrams, an AUC value of 0.815 was obtained, compared to 0.61
and 0.67 for the transect and non transect 0d methods respectfully. Since a
higher AUC corresponds to a higher correct classification rate, our results in-
dicate that the 1d methodology is better for classifying persistence diagrams of
canopy height models.

We interpret 0d persistence (for both the transect and the non-transect cases)
as the heights of individual trees relative to those around it. This is analogous
to sampling a function where each point is a tree, and persistence comes from
comparing heights of points to heights of their neighbors. In contrast, 1d persis-
tence is a measure of more general trend-like increases. Such an increase could
be caused by a mountain or hill, since the elevations would be getting higher
and higher and would reach a maximum at the middle. Although ground level
elevation is accounted for in the model and only height from the ground is pro-
vided in the data, the analogy is still useful. One could imagine a group of
trees that get gradually taller and taller closer to the middle of the group. 1d
persistence measures the size and importance of such groups. As such, these
are two fundamentally different but related quantities, and it is acceptable that
results from using them could vary.

Taking a closer look at the 0d transect data, we can see that the persistence
diagrams look quite similar. In particular, diagrams from all the considered
sites except for the Harvard site look somewhat alike, with many points close to
the diagonal. The The Harvard diagram is interesting to think about, in that
the diagram is quite spread out. There are many persistence points with early
birth and late death. This must have been an important distinguishing factor in
classifying the profiles forests. However, the similarity of the other 3 forest sites
must have made the classification process less effective. The same could be said
for the 0d non-transect method. These diagrams are less similar, however, than
the ones from the transect data. Despite this fact, this method still did not do
as well as the 1d method. In this case, there were two pairs of similar diagrams,
Bartlett and GRSM, and MLBS and Harvard. It is interesting to note that
the persistence diagram of the Harvard site resembles that of the transect data,
which makes intuitive sense.
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Although the diagrams for the MLBS and Harvard sites for 1d persistence
look similar in that both of them have a lot of points high up on or near the
diagonal, the 1d method still gave a better classification model. A logical con-
clusion from this may be that forests are better identified not by how big the
differences between individual trees are, but how many uniform trends there are,
in terms of height. In other words, it is easier to classify a forest based on groups
of tall trees and groups of short trees, getting taller and shorter in the middle
of the group. This may have more biologically sophisticated explanations, but
individual trees (0d persistence) may be accidents, while group-like trends (1d
persistence) are harder to come upon accidentally. Sometimes a tall tree in
a usually short forest survives, but many don’t due to various environmental
factors.

The data resource that was used in this study contained immense amounts of
data. This study could be extended to any number of forest locations, following
a similar methodology that was outlined in this study. The data resource also
contains numerous other attributes measured across the forests, not just canopy
height information. Examples of these attributes include soil type information,
logging information and other information. Including variables such as those
into the classification model could prove beneficial, and may create a better
predictor. In addition, it would be useful to classify on these additional param-
eters, not just on forest type/location. Such a model could be useful for various
reasons. One may be interested in finding out whether a forest was logged or
not, or what kind of soil a forest most likely has without actually sampling the
forest. This would be possible from these additional models. Other classification
methods, such as k nearest nearest neighbors may prove to be more effective,
and a logical extension of this study would be to compare the performance of
different learning methods.
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